Suppressed Relaxation in InGaAs/GaAs Quantum Dots
نویسندگان
چکیده
منابع مشابه
Spin relaxation in quantum dots
Results are given for spin relaxation in quantum dots due to acoustic phonon-assisted flips of single spins at low temperatures. The dominant spin relaxation processes for varying dot size, temperature, and magnetic field are identified. These processes are mediated by the spin-orbit interaction and are described within a generalized effective mass treatment. Particular attention is given to ph...
متن کاملElectron Spin-Phonon Relaxation in Quantum Dots
We calculate the spin relaxation rates in parabolic quantum dots due to the phonon modulation of the spin-orbit interaction in presence of an external magnetic field. Both, deformation potential (DP) and piezoelectric (PE) electron-phonon couplings are included in the Pavlov-Firsov spin-phonon Hamiltonian. We demonstrate that the spin relaxation rates are particularly sensitive with the Landé g...
متن کاملProbing relaxation times in graphene quantum dots
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexpl...
متن کاملSpin-Lattice Relaxation in Si Quantum Dots
We consider spin-lattice relaxation processes for electrons trapped in lateral Si quantum dots in a [001] inversion layer. Such dots are characterized by strong confinement in the direction perpendicular to the surface and much weaker confinement in the lateral direction. The spin relaxation is assumed to be due to the modulation of electron g-factor by the phonon-induced strain, as was shown p...
متن کاملExcited-state relaxation in PbSe quantum dots.
In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: physica status solidi (b)
سال: 2001
ISSN: 0370-1972,1521-3951
DOI: 10.1002/1521-3951(200103)224:2<487::aid-pssb487>3.0.co;2-#